

First Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Engineering Mathematics - I

Time: 3 hrs .
Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Find the $n^{\text {th }}$ derivative of $\frac{x}{(1+x)(1+2 x)}$.
(06 Marks)
b. Prove that the following curves cut orthogonally $r^{n}=a^{n} \cos n \theta$ and $r^{n}=b^{n} \sin n \theta$. (07 Marks)
c. Find the radius of curvature of the curve $r^{n}=a^{n} \cos n \theta$.
(07 Marks)

OR

2 a. If $\cos ^{-1}(y / b)=\log (x / n)^{n}$, then show that $x^{2} y_{n+2}+(2 n+1) x y_{n+1}+2 n^{2} y_{n}=0$. (06 Marks)
b. Find the pedal equation of the curve $r^{2}=a^{2} \sec 2 \theta$.
(07 Marks)
c. Find the radius of curvature for the curve $y^{2}=\frac{4 a^{2}(2 a-x)}{}$, where the curve meets the $x-$ axis.
(07 Marks)

Module-2

3 a. Obtain the Taylor's expansion of $\log _{e} x$ about $x=1$ upto the term containing fourth degree.
(06 Marks)
b. If $u=\operatorname{cosec}^{-1}\left(\frac{x^{1 / 2}+y^{1 / 2}}{x^{1 / 3}+y^{1 / 3}}\right)$, show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=-\frac{1}{6} \tan u$.
(07 Marks)
c. If $u=x+3 y^{2}-z^{3}, v=4 x^{2} y z, \quad w=2 z^{2}-x y$, find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$ at $(1,-1,0)$.
(07 Marks)

OR

4 a. Evaluate $\underset{x \rightarrow 0}{\operatorname{Lt}}\left\{\frac{\sin 2 x-2 \sin x}{x^{3}}\right\}$.
(06 Marks)
b. Obtain the Maclaurin's expansion of the function $\log (1+x)$ upto $4^{\text {th }}$ degree terms. (07 Marks)
c. If $u=f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$, prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=0$.
(07 Marks)

Module-3

5 a. A particle moves along the curve, $x=1-t^{3}, y=1+t^{2}$ and $z=2 t-5$. Find the components of velocity and acceleration at $t=1$ in the direction $2 i+j+2 k$.
(06 Marks)
b. If $\vec{F}=(x+y+a z) i+(b x+2 y-z) j+(x+c y+2 z) k$, find a, b, c such that Curl $\vec{F}=\vec{O}$ and then find ϕ such that $\overrightarrow{\mathrm{F}}=\nabla \phi$.
(07 Marks)
c. Prove that $\operatorname{div}(\phi \overrightarrow{\mathrm{A}})=\phi(\operatorname{div} \overrightarrow{\mathrm{A}})+\operatorname{grad} \phi \cdot \overrightarrow{\mathrm{A}}$.
(07 Marks)

6 a. The position vector of a particle at time t is $\vec{r}=\cos (t-1) i+\sin h(t-1) j+t^{3} k$. Find the velocity and acceleration at $\mathrm{t}=1$.
(06 Marks)
b. If $\overrightarrow{\mathrm{F}}=\nabla\left(\mathrm{xy}^{3} \mathrm{z}^{2}\right)$, find $\operatorname{div} \overrightarrow{\mathrm{F}}$ and curl $\overrightarrow{\mathrm{F}}$ at the point $(1,-1,1)$.
(07 Marks)
c. Prove that $\operatorname{Curl}(\phi \overrightarrow{\mathrm{A}})=\phi(\operatorname{curl} \overrightarrow{\mathrm{A}})+\operatorname{grad} \phi \times \overrightarrow{\mathrm{A}}$.
(07 Marks)

Module-4

7 a. Find the reduction formula for $\int_{0}^{\pi / 2} \sin ^{n} x d x$.
(06 Marks)
b. Solve $x^{3} \frac{d y}{d x}-x^{2} y=-y^{4} \cos x$.
c. Show that the family of parabolas $y^{2}=4 a(x+a)$ is self orthogonal.
(07 Marks)
(07 Marks)

OR

8 a. Evaluate $\int_{0}^{\infty} \frac{x^{2}}{\left(1+x^{2}\right)^{7 / 2}} d x$.
(06 Marks)
b. Solve $\left(y^{2} e^{x y^{2}}+4 x^{3}\right) d x+\left(2 x y e^{x y^{2}}-3 y^{2}\right) d y=0$.
(07 Marks)
c. A body in air at $25^{\circ} \mathrm{C}$ cools from $100^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ in 1 minute. Find the temperature of the body at the end of 3 minutes.
(07 Marks)

Module-5

9 a. Find the rank of the matrix
$\left[\begin{array}{llll}4 & 0 & 2 & 1 \\ 2 & 1 & 3 & 4 \\ 2 & 3 & 4 & 7 \\ 2 & 3 & 1 & 4\end{array}\right]$
(06 Marks)
b. Find the numerically largest eigen value and the corresponding eigen vector of the matrix by power method :
$\mathrm{A}=\left[\begin{array}{ccc}4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5\end{array}\right]$ by taking the initial approximation to the eigen vector as $[1,0.8,-0.8]^{\prime}$.
Perform 3 iterations.
(07 Marks)
c. Show that the transformation :
$y_{1}=2 x_{1}-2 x_{2}-x_{3}, \quad y_{2}=-4 x_{1}+5 x_{2}+3 x_{3}$ and $y_{3}=x_{1}-x_{2}-x_{3}$ is regular and find the inverse transformation.
(07 Marks)

OR
10 a. Solve $20 x+y-2 z=17 ; 3 x+20 y-z=-18 ; 2 x-3 y+20 z=25$ by Gauss - Seidel method.
(06 Marks)
b. Diagonalize the matrix $A=\left[\begin{array}{cc}-19 & 7 \\ -42 & 16\end{array}\right]$.
(07 Marks)
c. Reduce the quadratic form $2 x_{1}^{2}+2 x_{2}^{2}+2 x_{3}^{2}+2 x_{1} x_{3}$ into Canonical form, using orthogonal transformation.
(07 Marks)

17CHE 12/22

First/Second Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Engineering Chemistry

Time: 3 hrs .
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module- 1

1 a. What are ion selective electrodes? Discuss the construction and working of a glass electrode.
(07 Marks)
b. Define Battery. Explain construction, working and uses of ($\mathrm{Ni}-\mathrm{Metal}$ Hydride) battery.
(07 Marks)
c. What are fuel cells? How it is different from a galvanic cell? Mention any two advantages of fuel cell.
(06 Marks)

OR

2 a. Derive Nernst equation for electrode potential.
(06 Marks)
b. What are concentration cells? The emf of the cell
$\mathrm{Ag}\left|\mathrm{AgNO}_{3}(0.0083 \mathrm{M}) \| \mathrm{AgNO}_{3}(\mathrm{XM})\right| \mathrm{Ag}$
was found to be 0.074 V at 298 K . Calculate the value of X and write the cell reactions.
(07 Marks)
c. Describe the construction, working and applications of methanol-oxygen fuel cell.
(07 Marks)

Module- 2

3 a. Define corrosion. Explain electrochemical theory of corrosion by taking Iron as an example.
(07 Marks)
b. What is Cathodic protection? Explain Sacrificial Anode and Impressed Current method for prevention of corrosion.
(07 Marks)
c. Define electroless plating. What are the differences between electroplating and electroless plating?
(06 Marks)

OR

4 a. How does the following factors affect the rate of corrosion?
(i) Nature of the corrosion product
(ii) Temperature
(iii) pH .
(06 Marks)
b. Explain the process of electroplating of chromium and its applications.
(07 Marks)
c. Discuss the process of electroless plating of copper and explain its application in the manufacture of Printed Circuit Board (PCB).
(07 Marks)

Module-3

5 a. Define Gross and Net calorific values of a solid on a liquid fuel. Calculate the gross and net calorific value of a sample of coal 0.5 g of which when burnt in a bomb calorimeter raised the temperature of water from 293 K to 296.4 K . The mass of water is 1000 g and water equivalent of calorimeter is 350 g . The specific heat of $\mathrm{H}_{2} \mathrm{O}$ is $4.187 \mathrm{~kJ} / \mathrm{kg} / \mathrm{K}$, latent heat of steam is $2454 \mathrm{~kJ} / \mathrm{kg}$. The coal sample contains 93% carbon, 5% hydrogen and 2% ash.
(07 Marks)
b. What is meant by knocking? What are its ill effects? Discuss the mechanism of knocking by giving relevant equations.
c. Explain the construction and working of a PV cell.
(07 Marks)
(06 Marks)

OR

6 a. What is cracking of petroleum? Describe the fluidized bed catalytic cracking.
(07 Marks)
b. Explain the production of solar grade silicone by Union Carbide process.
(07 Marks)
c. Write a note on :
(i) Power alcohol
(ii) Biodiesel.
(06 Marks)

Module-4

7 a. What is addition polymerization? Illustrate the mechanism of addition polymerization by taking Vinyl Chloride as an example.
b. Describe the manufacture of (i) PMMA (ii) Epoxy resin. Mention the uses.
(07 Marks)
c. A polymer sample containing 100,250 and 300 molecules having molar mass $10^{3} \mathrm{~g} / \mathrm{mol}$, $10^{4} \mathrm{~g} / \mathrm{mol}$ and $10^{5} \mathrm{~g} / \mathrm{mol}$ respectively. Calculate the number average and weight average molecular mass of polymer.
(06 Marks)

OR

8 a. What is glass transition temperature? Explain any three factors affecting T_{g}.
(07 Marks)
b. What are elastomers? Give the synthesis and applications of
(i) Silicone rubber
(ii) Polycarbonate.
(07 Marks)
c. What are conducting polymers? Discuss the conduction mechanism in polyaniline. (06 Marks)

Module-5

9 a. Define Priming and Foaming. Mention the reasons for priming and foaming in the boiler with any two prevention steps.
(07 Marks)
b. What is desalination? Explain the desalination of water by reverse osmosis.
(06 Marks)
c. Describe the synthesis of nano-materials by Sol-gel process.

OR

10 a. Define COD. In COD test $25.5 \mathrm{~cm}^{3}$ and $12.5 \mathrm{~cm}^{3}$ of 0.05 N FAS solution and required for blank and sample titration respectively. The volume of the test sample used is $25 \mathrm{~cm}^{3}$. Calculate the COD of the sample solution.
(07 Marks)
b. Explain the precipitation method for preparation of nanomaterials with an example.
c. Write a note on Fullerenes and Composites.

First/Second Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Engineering Physics

Time: 3 hrs.
Note: 1. Answer any FIVE full questisns, ohoosing ONE full question from each module.
2. Physical constants; Velocity of light, $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ mass of the electron, $m=9.1 \times 10^{-31} \mathrm{~kg}$ Planck's constant, $h=6.625 \times 10^{-34} \mathrm{JS}$ charge of electron, $e=1.6 \times 10^{-19} \mathrm{C}$ Boltzmann's constant $K=1.382 \times 10^{-23} \mathrm{~J} / \mathrm{K}$ Avagadro's number, $N_{A}=6.02 \times 10^{26} / \mathrm{K}$ mole.

1 a. Define group velocity and phase velocity and hence obtain the relation between them.
b. Mention any four important charactenistics of matter waves.
(06 Marks)
c. Assuming time independent Schradinger wave equation (04 Marks) eigeri value and eigen function for an electron in one dimensional potential well of infinite wall height.
(07 Marks)
d. The velocity of uncertainty electron was observed to be $5 \times 10^{3} \mathrm{~m} / \mathrm{s}$. Lising Heisenberg uncertainty principle. Calculate the uncertainty of an electron in its position.
(03 Marks)
OR
2 a. Mention assumption of Planck's law. Obtain Wien's law and Rayleigh-Jean's law from Planck's law fori shorter and longer wavelength limits.
(07 Marks)
b. Set up time irdependent one dimensional Schrodinger wava equation.
(07 Marks)
c. Briefly explain probability density of wave function.
(03 Marks)
d. An electron has K.E. 120 eV . Hind its de Broglie wavelength.
(03 Marks)

Module-2

3 a. Discuss the merits of quantum free electron theory.
(06 Marks)
b. Derive an expression for electrical conduotivity of an intrinsic semiconductor.
(05 Marks)
a. What is Meissner effect? Explain Type-I and Type-II superconductors.
(05 Marks)
d. Find the temperature at which there is $18 / \%$. Probability that a state with energy 0.5 eV above Fermi energy is occupied.
(04 Marks)

OR

4 a. Derive an expression for electrical conductivity based on quantum free electron theory.
b. Define mobility factor, drift velocity, mean collision time and relaxation time. $\begin{aligned} & \text { (06 Marks) } \\ & \text { (} 04 \text { Marks) }\end{aligned}$
c. What is superconduotivity? Explain BCS theory of superconductivity. (06 Marks)
d. For intrinsic gallium arsenide at room temperature, the electrical conductivity is $10 \mathrm{ohm}^{-1} \mathrm{~m}^{-1}$. The electron and hole mobilities are $8.85 \mathrm{~m}^{2} /$ vs and $0.04 \mathrm{~m}^{2} /$ vs respectively. Calculate the intrinsic carrier concentration.
(04 Marks)

Module-3

5 a. Obtain an expression for energy density of radiation under thermal equilibrium condition in terms of Einstein's coefficients.
(07 Marks)
b. Explain the recording and reconstruction technique of holography.
(05 Marks)
c. Discuss point to point optical fiber communication system with neat block diagram.
(05 Marks)
d. Calculate V-number for an optical fiber of core diameter $45 \times 10^{-6} \mathrm{~m}$ and with refractive indices 1.45 and 1.40 respectively for core and cladding when the wavelength of the propagation wave is $700 \times 10^{-9} \mathrm{~m}$.
(03 Marks)

OR

6 a. Describe the construction and working of CO_{2} laser with suitable diagrams and mention some important applications.
(08 Marks)
b. Explain the condition fir lasing action.
(04 Marks)
c. Derive an expression for numerical aperture of an optical fiber and hence show the condition for propagation. The refractive indices of core and cladding are 1.50 and 1.48 respectively. Calculate the numerical aperture of an optiaal fiber.
(08 Marks)

Module-4

7 a. Define atomic packing factor, calculate the atomic packing factor for SC, BCC and FCC structure.
(08 Marks)
b. Explain in brief the seven crystal system with neat diagrams.
(07 Marks)
c. What are Miller indices? Explain the procedure of ffinding Miller indices.
(05 Marks)

OR
8 a. Describe the construotion and working of Bragg's spectrometer and hence how it is used to determine crystal structure.
(08 Marks)
b. Derive an expression for inter planar spacing in terms of Miller indices.
(06 Marks)
c. Explain the crystal structure of diamond with neat sketch.
(06 Marks)

Module-5

9 a. Explain the construction and working of Reddy sltock tube and explain any three important applications.
(08 Marks)
b. Descritbe the principle, construction and working of SEM with neat diagram.
(08 Marks)
c. Explain the types of Carbon nano tubes with diagrams.

OR

10 a. Explain Rankine-Hugoniot equations for a normal shock wave.
(06 Marks)
b. Describe the top down approach of preparation of nanomaterials by ball milling method.
c. Describe dirc discharge method of obtaining CNTs with neat diagram.
(05 Marks)
d. Define Mach number, subsonic wave, ultrasonic wave and supersonic wave.
(04 Marks)

First/Second Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Programming in C and Data Structures

Time: 3 hrs .
Max. Marks: 100

Note: Answer any FINE full questions, choosing ONE full question from each module.

Module- 1

1 a. What is an algorithm? Write algorithm to find largest off3 numbers. (08 Marks)
b. Explain any five operators used in C language. (10 Marks)
c. Explain two types of type conversions.
(02 Marks)

OR
2 a. Explain the structure of ' C ' program with an example program.
(10 Marks)
b. Explain scanf() \& $\operatorname{rrintf}($) function in C language with syntax and example program.
(10 Marks)

Module-2

3 a. Explain if, if-else, nested if-else and cascaded if-else with examples and syntax. (10 Marks)
b. Write a C program to simulate simple calculator that performs arithmatic operations using switch statement. An error message should be displayed, if any attempt is made to divide by zero.
(10 Marks)

OR

4 a. List the differences between while loop and do-while loop. Write a C program to find the sum of natural numbers from 1 to N using for loop.
(10 Marks)
b. Write a © program to read a year as an input and find whether it is a LEAP YEAR or not.
(04 Marks)
c. Write a C program to find reverse of a number and check whether it is a PALINDROME or not.
(06 Marks)

Module-3

5 a. What is an array? Explain the declaration and initialization of one dimensional and two dimensional array with an example.
(10 Marks)
b. Explain any three string manipulation library function with example. (06 Marks)
c. Write a © program to implement string copy operation STRCOPY(Str1, Str2) that copies a string Strl te another string Str2 without using library function.
(04 Marks)

OR

6 a. What is function ${ }^{9}$ Explain the two categories of argument passing techniques, with example.
(10 Marks)
b. Write a C function isprime(num) that accepts an integer argument and return 1 if the argument is a prime or a 0 otherwise. Write a program that invokes this function to generate prime number between the given range.
(10 Marks)

Module-4

7 a. What is structure data type? Explain.
(04 Marks)
b. Show how a structure variable is passed as a parameter to a function, with an example.
(06 Marks)
c. Explain the concept of array of structures, with a suitable C program.
(10 Marks)

OR

8 a. What is FILE? Explain fopen(), fclose() functions.
(05 Marks)
b. Explain various modes of FILE.
(05 Marks)
c. Given two files "Studentnanre.txt" and "USN.txt" that contains stúdents name and USN respectively. Write a C-program to create a new file called "output•txt" and copy the contents of files "Studentname.txt" and "USN.txt" into output file in the sequence shown below :

Student name	USN
Name -1	USN -1
Name -2	USN -2
-	-
-	-
-	-
-	

(10 Marks)

Module-5

9 a. Define a pointer. Explain how pointer variable is declared and inifialized.
(05 Marks)
b. What are primitive and non - primitive data types? Give examples.
c. Write a program using pointers to compute sum, mean and standard deviation of all elements stored in an array of " n " real numbers.

OR

10 a. Explain any 2 pre- processor directives in ' C ' lamguage.
b. What is a STACK? Explain its applications.
c. What is a QUEUE? Explain with example.
d. Write a program te swap 2 numbers using call-by-reference method.

Cङssciline

USN \square 17CIV13/23

First/Second Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Elements of Civil Engineering and Mechanics

Time: 3 hrs.
Max. Marks: 100

Note: Answer any FIVE full questions, choesing ONE full question from each module.

Module-1

1 a. Explain briefly scope of aivil engineering in, i) Structural Engineering ii) Transportation Engineering.
(06 Marks)
b. Explain briefly the impact of infrastructure on the socioeconomic development of country.
c. State and explain cifferent elements of force.
(06 Marks)
d. Find the moment of force $\mathrm{F}=600 \mathrm{~N}$ about ' A ' as shown in Fig.Q. I (d),
(04 Marks)

Fig.0.1(d)
(04 Marks)

OR
2 a. State and explain principle of transmissibility of forces.
(04 Marks)
b. Differentiate Hetween flexible paverrent and rigid pavement.
(04 Marks)
c. A block off 200 N is kept on the inclined plane and is fixed to the plane. Find the components of weight in the direction alang the plane and perpendicular to the plane as indicated in Fig.Q.2(c).

Fig.Q.2(c)
d. Replace the horizontal force of $\mathbf{6} 00 \mathrm{~N}$ acting on the lever by an equivalent system consisting of a force and a couple at ' $\mathbf{0}$ ' as shown in Fig.Q.3.

Fig.Q.2(d)

Module-2

3 a. State and prove law of parallelogram of forces.
(06 Marks)
b. Explain with neat diagram,
i) Coefficient of friction
ii) Angle of repose
iii) Cone of friction.
(06 Marks)
c. The four coplanar concurrent forces acting at a point are as shown in Fig.Q.3(c). One of the force is unknown and its magnitude is as shown by ' F '. The resultant of these forces is 5 kN and is acting along x -axis. Determina the force F and its inclinatiøn ' θ ' with x -axis.
(08 Marks)

Fig.Q.3(c)

4 a. State and prove Lami's theorem.
(04 Marks)
b. Compute the tensions in the strings $A B, B C$ and $C D$ as shown in Fig.Q.4(b).

c. Two blocks A and B weighing 2 kN and 1.5 kN are connected by a wire passing over a smooth frictionless pulley as shown in Fig.Q.4(c). Determine the magnitude of force ' P ' required to impøund motion. Take $\mu=0.20$.

Fig.Q.4(c)

Module-3

5 a. State and explain Varignon's theoremb.
(06 Marks)
b. What are the types of loads and supports a beam may have? Explain briefly with neat sketches.
c. Determina the position, magnitude and direction of resultant of the forces acting on a body as shown in Fig.Q.5(c) with respect to point A.
(08 Marks)

Fig.Q.5(c)

OR

6 a. Define Equillibriant. Explain the conditions of equilibrium of coplanar concurrent force system and coplanar non concurrent force system.
(06 Marks)
b. Find the reactions for a cantilever beam as shown in Fig.Q.6(b)
(06 Marks)

Fig.Q.6(b)
c. Determine the support reactions for the overhanging beam as shown in Fig.Q.6(c). (08 Marks)

Fig.Q.6(c)

Module-4

7 a. Determine the centroid of a semicircular lamina of radius ' R ' by the method of integration.
(08 Marks)
b. Find the polar moment of inertia of the section as shawn in Fig.Q.7(b), about an axis passing through its centroid and find polar radius of gyration.
(12 Marks)

Fig.Q.7(b)

OR

8 a. State and prove parallel axis theorem.
(06 Marks)
b. With reference to the coordinate axes x and y, locate the centroid of the area shown in Fig.Q.8(b).
(14 Marks)

Fig.Q.8(b)

Module-5

9 a. Define the following: i) Kinematics ii) Kinetic
iii) Motion iv) Path.
(06 Marks)
b. What is centrifugal force and super elevation?
c. A Burglar's car starts at an acceleration of $2 \mathrm{~m} / \mathrm{sec}^{2}$. A police vigilant party came after 5 seconds and continued to chase the Burglar's car with a uniform veloaity of $20 \mathrm{~m} / \mathrm{sec}$. Find the time taken in which the police van will overtake the car.
(08 Marks)

OR

10 a. Define the following: i) Uniform welocity $\begin{aligned} & \text { ii) Reactilinear motion } \\ & \text { iii) Curvilinear motion }\end{aligned}$ iv) Projectile.
(04 Marks)
b. Determine the position at which the ball is thrown up the plane will strike the incline plane as shown in Fig.Q.10(b). The initial velocity is $30 \mathrm{~m} / \mathrm{sec}$ and angle of projection is $\tan ^{-1}\left(\frac{4}{3}\right)$ with horizontal.
(08 Marks)

Fig.Q.10(b)
c. A stone is dropped into a well and a sound of splash is heard after 4 seconds. Find the depth of well if the velocity of sound is $350 \mathrm{~m} / \mathrm{sec}$.
(08 Marks)
\square
USN
First/Second Semester B.E. Degree Examination, December 2018
COMPUTER AIDED ENGINEERING DRAWING
Time: 3 Hours
(COMMON TO ALL BRANCHES)
Max. Marks: 100

Note: 1. Answer three full questions.
2. Use A4 sheets supplied.
3. Draw to actual scale.
4. Missing data, if any, may be assumed suitably.

1. a. A point ' P ' is 30 mm in front of $\mathrm{VP}, 40 \mathrm{~mm}$ above HP and 50 mm from RPP. $\mathbf{1 0}$ Marks Draw its projections.
b. Top view of a line AB 80 mm long measures 65 mm and length of the front view is 50 mm . The end A is on HP and 15 mm in front of VP. Draw the projections.

OR

1. A pentagonal lamina of edges 25 mm is resting on VP with one of its sides 30 Marks such that the surface makes an angle 60° with VP. The edge on which it rests is inclined at 45° to HP. Draw its projections.
2. A pentagonal pyramid 25 mm sides of base and 50 mm axis length is 40 Marks suspended freely from a corner of its base. Draw the projections of the pyramid when the axis appears to be inclined to VP at 45°.
3. A hexagonal pyramid of sides 35 mm and altitude 65 mm is resting on HP on its base with two of the base sides perpendicular to VP. The pyramid is cut by a plane inclined at 30° to HP and perpendicular to VP and is intersecting the axis at 30 mm above the base. Draw the development of the remaining portion of the pyramid.

OR
3. Three cubes of sides $60 \mathrm{~mm}, 40 \mathrm{~mm}, 20 \mathrm{~mm}$ are placed centrally one above 30 Marks the other in ascending order of their side. Draw the isometric projection of the combination.

First/Second Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Elements of Mechanical Engineering

Time: 3 hrs

Max. Marks: 100

Note: Answer any FIVE full questions, choosing
ONH full question from each module.

Module-1

1 a. Explain petroleum based gaseous fuels. (06 Marks)
b. Explain the principle and working of a wind will with neat sketch.
(08 Marks)
c. Bio-fuels are alrernate for fosil fuels, explain.
(06 Marks)

OR

2 a. Explain with neat sketch the construction and working of Bahcock and Wilcox boiler.
(10 Marks)
b. List the differences between fire tube and water tube boilers.
(06 Marks)
c. Explain any 4 devices which are necessary for saft operation of boilers. ($\mathbf{4}$ Marks)

Module- 2

3 a. Explain with neat sketch Parson turbire and its pressure valocity diagram. (08 Marks)
b. List the differences between open oycle and closed cycle gas turbine. (06 Marks)
c. Explain the constructions and warking of a Kaplan turbine with neat sketch.
(06 Marks)

OR

4 a. Bring out the comparisens between 2-stroke and 4-storke IC engine. (06 Marks)
b. Explain with neat sketch a 4 stroke engime where combustion of fuel takes place at constant pressure.
(07 Marks)
c. A gas engine working on a 4 stroke aycle has a cylinder diameter of 0.25 m and length 0.45 m and running at 180 RPM. Its mechanical efficiency is 80% and when man effective pressure is 6 bar. Find the indicated pewer, break power and frictional power. What is its fuel consumption rate ($\mathrm{kg} / \mathrm{hr}$) and break specific fuel consumption ($\mathrm{kg} / \mathrm{kw} \mathrm{h}$) if the energy content of the fuel is $42,00 \mathbf{~ k J} / \mathrm{kg}$ and brake thermal efficiency is 25%.
(07 Marks)

Module-3

5 a. Explain knurling operations with a neat sketch.
(06 Marks)
b. Explain with neat sketches counter sinking and counter boring operations. (08 Marks)
c. List the various milling operations and explain a milling operation using side and face cutter.
(06 Marks)

OR

6 a. Classify robots based on physical configuration and explain a robot which has a work envelop of hemisphere with neat sketch.
(08 Marks)
b. Explain the necessity of automation and important features of flexible automation. (06 Marks)
c. List any 2 advantages, limitations and applications of $\mathrm{NC} / \mathrm{CMC}$ machines.
(06 Marks)

Module-4

7 a. Explain composite materials and its need in today's word.
b. Classify Ferrous metals with suitable example.
c. Define non-ferrous metals and explain any two non-ferrous metals and two alloys. (08 Marks)

OR

8 a. List out the comparisoir between soldering and tarzing. (06 Marks)
b. Explain with neat sketch the electrodes used in arc welding and its functions. (06 Marks)
c. Explain oxy-aaitylene welding process with neat sketch. (08 Marks)

Module-5

9 a. Define refrigerant and explain cormonly used refrigerant (any 3).
(06 Marks)
b. Explain with neat sketch the principles and working of a vapour compression refrigerator.
(08 Marks)
c. Define the following : i) tan of refrigeration ii) coefficient of performance iii) relative COP.
(06 Marks)

OR

10 a. Explain with a neat sketch, working of room air conditioner. (08 Marks)
b. Explain with neat sketch the working of vapor absorbtion rafrigerator. (08 Marks)
c. List out the properties of a good reftrigerant.

First/Second Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Basic Electrical Engineering

Time: 3 hrs .
Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. State and explain Kirchoff's law as applied to DC circuits.
(07 Marks)
b. What are the differences between series and parallel circuit.
(06 Marks)
c. Find the inductance of a coil of 200 turns wound on a paper core tube of 25 cm length and 5 cm radius. Also calculate energy stored in it if current rises from zero to 5 A $\left(\mu_{\mathrm{r}}\right.$ for paper $\left.=1\right)$.
(07 Marks)

OR
2 a. State and explain the faradays law of Electromagnetic induction (EMI).
(06 Marks)
b. Define the coefficient of coupling and find its relation with L_{1}, L_{2} and M.
(06 Marks)
c. Find the currents I_{1}, I_{2} and I_{3} and the voltages V_{a}, V_{b} in the network shown below :

Fig.Q2(c)
(08 Marks)

Module-2

3 a. With a neat sketch, explain the construction of the various parts of DC generator. (08 Marks)
b. Explain with a neat diagram the constructional features and operation of an induction type single phase energy meter.
(07 Marks)
c. Explain the significance of back Emf in DC motor.
(05 Marks)

OR

4 a. Derive the EMF equation of DC generator.
(06 Marks)
b. Describe with a neat sketch, the constructional details and working principle of a dynamometer type wattmeter.
(06 Marks)
c. A 4 pole, 100 V shunt generator with lap connected armature, having field and armature resistance of 50Ω and 0.1Ω respectively. Supplies a load of sixty lamps. Each lamp rated $100 \mathrm{~V}, 40 \mathrm{~W}$. Calculate the total armature current, the current per path and the generated emf. Allow a contact drop of 1 volt per brush.
(08 Marks)

Module-3

5 a. Derive an expression for power in pure inductance circuit and draw voltage, current and power waveforms.
b. Draw and explain the wiring diagrams for the two-way control of lamp.
(06 Marks) Calculate the resistance, inductance and impedance of the coil. Also determine the power consumed when it is connected across $100 \mathrm{~V}, 25 \mathrm{~Hz}$ supply.
(08 Marks)

OR

6 a. Derive an expression for power in series resistance and inductance circuit and draw voltage and current waveform.
(07 Marks)
b. With a neat diagram, explain pipe earthing.
(05 Marks)
c. A voltage $\mathrm{V}=100 \sin 314 \mathrm{t}$ is applied to a circuit consisting of a 25Ω resistor and an $80 \mu \mathrm{~F}$ capacitor in series. Determine :
i) Peak value of current
ii) Power factor
iii) Total power consumed by the circuit.
(08 Marks)

Module-4

7 a. In a three phase delta connection, find the relation between line and phase values of currents and voltages. Also derive the equation for three phase power.
(06 Marks)
b. Show that the two wattmeters are sufficient to measure three phase power. Also derive an expression for the power factor in terms of wattmeter readings.
(06 Marks)
c. A 12 pole 500 rpm star connected alternator has 48 slots with 15 conductors per slot. The flux per pole is 0.02 wbs . The winding factor is 0.97 and pitch factor is 0.98 . Calculate the phase emf and line emf.
(08 Marks)

OR

8 a. Mention the advantages of three phase system over single phase system.
(06 Marks)
b. With neat sketches, explain the construction of salient pole alternator.
(07 Marks)
c. A balanced star connected load of $(8+\mathrm{J} 6) \mathrm{w}$ per phase is connected to a three phase, 230 V supply. Find the line current, power factor, power and reactive voltampere and total voltamper.
(07 Marks)

Module-5

9 a. Derive EMF equation of transformer.
(07 Marks)
b. Explain construction and working principle of a transformer with diagram.
(07 Marks)
c. The frequency of the emf in the stator of a 4 pole induction motor is 50 Hz and in the rotor is 1.5 Hz . What is the slip and at what speed is the motor running.
(06 Marks)

OR

10 a. Derive the condition for which the efficiency of a transformer is maximum.
b. What is slip in an induction motor? Explain why slip is never zero in an induction motor.
(06 Marks)
c. The maximum efficiency at full load and unity pf of a single phase $25 \mathrm{KVA}, 50 / 1000 \mathrm{~V}$, 50 Hz transformer is 98%, determine the efficiency at :
i) 75% load, 0.9 pf
ii) 50% load, 0.9 pf .
(08 Marks)

ตรcscilik

USN

17ELN15/25

First/Second Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Basic Electronics

Time: 3 hrs.
Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Explain the operation of PN junction diode under forward and reverse bias condition.
(07 Marks)
b. Discuss the load and line regulations using zener diode with neat circuit diagrams and appropriate expressions.
(08 Marks)
c. Design a 9 V DC reference source consisting of a zener diode and series connected resistor to operate from a $\approx 4 \mathrm{~V}$ supply. $\left[\mathrm{I}_{\mathrm{ZT}}=\mathrm{I}_{\mathrm{Z}}=20 \mathrm{~mA} \mathrm{~A}\right.$.
(05 Marks)

CR

2 a. With a neat circuit diagram, explain the operation of centre fapped full wave rectifier. Draw input and output waveforms.
(07 Marks)
b. Draw common emitter circuit, sketch input and output characteristics and explain three regions of operation.
(08 Marks)
c. Derive the relationship detween α and β. Find I_{C} and I_{E} for the transistor with $\alpha=0.99$ and $I_{B}=20 \mu \mathrm{~A}$.
(05 Marks)

Module-2

3 a. Precisely analyse the circuit of voltage divider bias.
(08 Marks)
b. What is Op-Amp? List out the ideal and particle charaoteristics of Op-Amp. (07 Marks)
c. Calculata the output voltage off a summer. Given : $\mathbf{R}_{1}=200 \mathrm{k} \Omega, \mathrm{R}_{2}=250 \mathrm{k} \Omega, \mathrm{R}_{3}=500 \mathrm{k} \Omega$. $\mathrm{R}_{\mathrm{f}}=1 \mathrm{~N} \Omega, \mathrm{~V}_{1}=-2 \mathrm{~V}, \mathrm{~V}_{2}=-\mathrm{IV}$ and $\mathrm{V}_{3}=+3 \mathrm{~V}$.
(05 Marks)

OR

4 a. Design a base bias cirouit to have $\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}$. The supply voltage is 15 V and transistor has $\mathrm{h}_{\mathrm{fc}}=100$.
(07 Marks)
b. Derive an exprassion for the voltage gain of inverting and Non-inverting amplifier.
(08 Marks)
c. Analyse the circuit of an op-amu as an integrator.
(05 Marks)

Module-3

5 a. Interpret the following:
i) $(48350)_{10}=(\quad)_{16}=(\quad)_{8}$
ii) $(\mathrm{FACE})_{16}=()_{2}=()_{8}$
iii) $(847.951)_{10}=(\quad)_{8}$.
(06 Marks)
b. Write the logical symbol, truth table and Boolean expressions of all the logic gates : (AND, OR, NOT, NOR, NAND, EX-OR, EX-NOR).
(09 Marks)
c. Realize EX-OR gate using NAND gates only.
(05 Marks)

OR

6 a. Which are the universal gates? Realize basic gates using universal gates?
(07 Marks)
b. Design a full adder using two half adder. Darive the necessary expressions.
(08 Marks)
c. Perform the subtraction using 2's complement method :
i) $(11010)_{2}-(10000)_{2}$
ii) $(11)_{10}-(15)_{10}$.
(05 Marks)

Module-4

7 a. With diagram and truth table explain NAND gate latch.
(06 Marks)
b. Explain the operation of 8051 microcontroller with neat block diagram. Mention the salient features.
(10 Marks)
c. Distinguish between flip-flop and latch. List out the applications of flip-flop.
(04 Marks)

OR

8 a. Explain the operation of clocked RS flip-flop.
(07 Marks)
b. With a reat block diagram, explain microcontroller based stepper motor control system.
(07 Marks)
c. With a diagram and truth table, explain NOR Gate Latch.
(06 Marks)

Module-5
9 a. What is modulation? Bxplain the need for madulation.
(04 Marks)
b. Derive the expressian fbr frequency modulation with a neat waveforms.
(10 Marks)
c. Explain the piezoelectric and photo electric transducers.
(06 Marks)

OR

10 a. Discuss the comparison between AM and FM modulation.
(06 Marks)
b. Explain the construction and principle of operation of LVDT.
(07 Marks)
c. A carrier of 1 MHz , with 400 Watt of its power is amplitude modulated with a sinusoidal signal of 2500 Hz . The depth of modulation 75%. Calculate the side band frequencies, the band width, the power in the side bands and the total power in the modulated wave.
(07 Marks)

USN

Second Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Engineering Mathematics - II

Time: 3 hrs.

Note: Answer any FIVE full questions, choosing one full question from each module.

Module- 1

1 a. Solve $y^{\prime \prime \prime}-y^{\prime \prime}+4 y^{\prime}-4 y=\sin h(2 x+3)$.
(06 Marks)
b. Solve $y^{\prime \prime}+2 y^{\prime}+y=2 x+x^{2}$.
(07 Marks)
c. Solve $\left(D^{2}+1\right) y=\tan x$ by method of variation of parameter.
(07 Marks)

2 a. Solve $\left(D^{3}-1\right) y_{y}=3 \cos 2 x$, where $D=\frac{d}{d x}$.
(06 Marks)
b. Solve $y^{\prime \prime}-6 y^{\prime}+9 y=7 e^{-2 x}-\log 2$.
(07 Marks)
c. Solve $y^{\prime \prime}-3 y^{\prime}+2 y=x^{2}+e^{x}$ by the method of un-determined coefficients.
(07 Marks)

Module-2

3 a. Solve $x^{2} y^{\prime \prime}+x y^{\prime}+9 y=3 x^{2}+\sin (3 \log x)$.
(06 Marks)
b. Solve $y\left(\frac{d y}{d x}\right)^{2}+(x-y) \frac{d y}{d x}-x=0$
(07 Marks)
c. Solve $(p x-y)(p y+x)=2 p$ by reducing it into Cluiraut's form by taking $X=x^{2}$ and $Y=y^{2}$.
(07 Marks)

OR

4 a. Solve $(3 x+2)^{2} y^{\prime \prime}+3(3 x+2) y^{\prime}-36 y=8 x^{2}+4 x+1$. (06 Marks)
b. Solve $p^{2}+2 p y \cot x-y^{2}=\mathbb{R}$.
(07 Marks)
c. SHow that the equation $\mathrm{xp}^{2}+\mathrm{px}-\mathrm{py}+1-\mathrm{x}=\mathrm{A}$ is Clairaut's equation and find its general and singular solution.
(07 Marks)

Module-3

5 a. Form the partial differential equation of the equation $\ell x+m y+n z=\phi\left(x^{2}+y^{2}+z^{2}\right)$ by eliminating the arbitrary function.
(06 Marks)
b. Solve $\frac{\partial^{2} u}{\partial x^{2}}=x+y$.
(07 Marks)
c. Derive the one dimensional heat equation $u_{t}=c^{2} \cdot u_{x x}$
(07 Marks)

OR

6 a. Form the partial differential equation of the equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ by eliminating arbitrary constants.
(06 Marks)
b. Solve $\frac{\partial^{2} z}{\partial y^{2}}=z$, given that $z=0$ and $\frac{\partial z}{\partial y}=\sin x$ when $y=0$.
(07 Marks)
c. Obtain the solution of one dimensional wave equation $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$ by the method of separation of variables for the positive constant.
(07 Marks)

Module-4

7 a. Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z}(x+y+z) d y d x d z$.
(06 Marks)
b. Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} y^{2} d y d x$ by changing the order of integratian.
(07 Marks)
c. Derive the relation betureen Beta and Gamma function as $\beta(m, n)=\frac{\sqrt{m} \cdot \sqrt{n}}{\sqrt{m+n}}$
(07 Marks)

OR

8 a. Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-y^{3}}} x^{3} \cdot y d x d y$
(06 Marks)
b. Evaluate $\int_{-a}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x$ by changing into polar coordinates.
(07 Marks)
c. Evaluate $\int_{0}^{\infty} \frac{\mathrm{dx}}{1+\mathrm{x}^{4}}$ by expressing in terms of betta function.
(07 Marks)

Module-5

9
a. Find (i) $\mathrm{L}[\mathrm{tcos} \mathrm{at}]$ (ii) $\mathrm{L}\left[\frac{\sin \mathrm{at}}{\mathrm{t}}\right]$.
(06 Marks)
b. Find the Laplace transform of the full wave rectifier $f(t)=E \sin w t, 0<t<\frac{\pi}{w}$ with peri $\epsilon d \frac{\pi}{w}$.
c. Solve $y^{\prime \prime}+k^{2} y=0$ given that $y(0)=2, y^{\prime}(0)=0$ using Laplace transform.
(07 Marks)

OR

10 a. Find Inverse Laplace transform $\mathbb{c} f \frac{\mathrm{~s}+2}{\mathrm{~s}^{2}(\mathrm{~s}+3)}$.
(06 Marks)
b. Express the function

$$
\mathrm{f}(\mathrm{t})=\left\{\begin{array}{lc}
\cos \mathrm{t}, & 0<\mathrm{t}<\pi \\
\operatorname{sir} \mathrm{t}, & \mathrm{t}>\pi
\end{array}\right.
$$

in terms of unit step function and hence find its Laplace transform.
(07 Marks)
c. Find Inverse Laplase transform of $\frac{1}{s\left(s^{2}+\mathrm{a}^{2}\right)}$ using convolution theorem.

